Study Guide: Understanding Climate Change

This study guide covers the main causes, effects, and potential solutions related to climate change as described in the sources.

I. What is Climate Change and the Greenhouse Effect?

- Climate change is fundamentally changing the world around us, driven by human activities such as pollution and overpopulation.
- The primary cause is a phenomenon known as the **greenhouse effect**.
- **Greenhouse gases** in the atmosphere allow the sun's light to enter but trap some of the heat from escaping, similar to the glass walls of a greenhouse.
- The more greenhouse gases in the atmosphere, the more heat gets trapped, which strengthens the greenhouse effect and increases the Earth's temperature.
- Examples of greenhouse gases include water vapor, carbon dioxide (CO2), methane, nitrous oxide, and chlorofluorocarbons.

II. Causes of Climate Change

- **Human activities** are the main driver of the rapid rate of climate change.
- A significant activity is the **burning of fossil fuels**, which has increased the amount of CO2 in the atmosphere by more than a third since the Industrial Revolution.
- The rapid increase in greenhouse gases has warmed the planet at an alarming rate.
- Atmospheric carbon dioxide levels today have not been reached in hundreds of thousands of years, despite Earth's climate fluctuating in the past.

III. Consequences and Effects of Climate Change

Climate change has widespread consequences for various aspects of our planet and human life:

• Oceans and Sea Levels:

- o Ice sheets, such as those in Greenland and Antarctica, are melting.
- o The extra water from melting glaciers causes sea levels to rise.
- o Rising sea levels lead to flooding of coastal regions.

• Weather Extremes:

- o Warmer temperatures make weather more extreme.
- o This includes more intense major storms, floods, and heavy snowfall.
- o It also means longer and more frequent droughts.

• Food Sources and Agriculture:

- o Changes in weather make growing crops more difficult.
- Water supplies are diminished.

• Ecosystems:

• The areas where plants and animals can live shift.

• Human Health:

o Climate change can directly affect people's physical health.

- o In urban areas, the warmer atmosphere traps and increases the amount of smog.
- o Smog contains **ozone particles**, which increase rapidly at higher temperatures.
- Exposure to higher levels of smog can cause serious health problems such as asthma, heart disease, and lung cancer.

IV. Combating Climate Change

- While humans are the cause of the rapid rate of climate change, they are also the ones who can combat it.
- A key solution involves working to replace fossil fuels with renewable energy sources.
- Examples of renewable energy sources include solar and wind power.
- These renewable sources do not produce greenhouse gas emissions.
- By making these changes, it might still be possible to **prevent some of the worst effects** of climate change.

Study Guide: Understanding Climate Change

This study guide covers the main causes, effects, and potential solutions related to climate change as described in the sources [Conversation History].

I. What is Climate Change and the Greenhouse Effect?

- Climate change is a real and serious issue, and it is far from just a buzzword. It is fundamentally changing the world around us [Conversation History] and is characterized by an abrupt increase in the Earth's temperature.
- The Earth's climate has changed throughout history, with most slight changes caused by small variations in the Earth's orbit. However, climate change as we know it today is not caused by these natural variations, but rather is very likely caused by human activities.
- It is estimated the Earth has gotten 1.2 to 1.4 degrees Fahrenheit warmer in just the last century.
- 10 out of the last 13 years were the warmest on record.
- The primary cause of this current rapid warming is a phenomenon known as the **greenhouse effect** [2, Conversation History].
- Greenhouse gases in the atmosphere allow the sun's light to enter but trap some of the heat radiated from the sun from escaping. This process is similar to the glass walls of a greenhouse [Conversation History].
- The more greenhouse gases in the atmosphere, the more heat gets trapped, which strengthens the greenhouse effect and increases the Earth's temperature [3, Conversation History].
- Greenhouse gases occur naturally, but in excess can be dangerous to our planet.
- Examples of greenhouse gases include water vapor, carbon dioxide (CO2), methane, nitrous oxide, and chlorofluorocarbons [Conversation History], with CO2 being directly linked to ocean acidification.

II. Causes of Climate Change

- **Human activities** are the main driver of the rapid rate of climate change [1, 2, Conversation History]. **97% of climate scientists agree** that this new tendency of warming is due to human activities.
- These activities have increased significantly since the **Industrial Revolution** [2, Conversation History].
- Humans have advanced remarkably, building airplanes, faster cars, and developing new technology, which has led to increased consumption of natural resources.
- A significant activity is the **burning of fossil fuels**, which has increased the release of non-naturally occurring greenhouse gases.
- The rapid increase in greenhouse gases has warmed the planet at an alarming rate [Conversation History].
- Atmospheric carbon dioxide levels today have not been reached in hundreds of thousands of years, despite Earth's climate fluctuating in the past [Conversation History].

III. Consequences and Effects of Climate Change

Climate change has widespread consequences for various aspects of our planet and human life:

• Oceans and Sea Levels:

- One of climate change's biggest victims is our **oceans**, which play a crucial role in regulating the Earth's temperature and providing 50% of the Earth's oxygen.
- Climate change has increased the global temperature of the oceans by more than
 0.3 degrees Fahrenheit since 1969.
- o A warmer ocean has devastating consequences for supporting life at sea.
- Ocean acidification is a direct effect of increased dissolved CO2. Since the late 18th century, ocean surface acidification has increased by 30%.
- A higher acid content puts calcifying species, like oysters and clams, and shallow water corals, at risk, which in turn puts the entire ocean food web at risk. This is particularly concerning for the 1 billion people relying on the ocean as their primary source of protein.
- Sea levels have risen 6.7 inches in just the last century, and the rate in the last decade has nearly doubled.
- o Sea levels have risen because as the ocean gets warmer, it swells.
- o On top of that, glaciers and ice sheets are melting [4, Conversation History].
- o Antarctica lost 36 cubic miles of ice between 2002 and 2005.
- Since 1994, each year on average, the Earth has lost **400 billion tons from its glaciers**. This is an enormous amount, comparable to an ice cube seven and a half kilometers (four miles) on a side melting and flowing into the sea.
- When all that ice melts, it fills up our oceans, and just like filling up a bathtub, the shores can't hold all that water, leading to **flooding of coastal regions** [5, Conversation History].

• Weather Extremes:

- o Troubling signs of climate change include increased extreme weather events.
- Natural disasters like floods, tornadoes, and deadly heat waves are more
 obvious to humans because of their immediate impact and their sharing of images
 in the media.
- Warmer temperatures make weather more extreme, resulting in more intense major storms, floods, and heavy snowfall, and also longer and more frequent droughts [Conversation History].

• Food Sources and Agriculture:

- o Changes in weather make growing crops more difficult [Conversation History].
- o Water supplies are diminished [Conversation History].

• Ecosystems:

o The areas where plants and animals can live shift [Conversation History].

• Human Health:

- o Climate change can **directly affect people's physical health** [Conversation History].
- o In urban areas, the warmer atmosphere **traps and increases the amount of smog** [Conversation History].

- Smog contains ozone particles, which increase rapidly at higher temperatures [Conversation History].
- Exposure to higher levels of smog can cause serious health problems such as asthma, heart disease, and lung cancer [Conversation History].

IV. Combating Climate Change

- Climate change as we know it today is a change in our Earth's overall temperature with massive and permanent ramifications.
- Although its consequences can be planet-threatening, scientists still believe there are things we can do on a personal level to help.
- While humans are part of the cause, we can also be part of the solution.
- A key solution involves working to **replace fossil fuels with renewable energy sources** [Conversation History].
- Examples of renewable energy sources include **solar and wind power**, which do not produce greenhouse gas emissions [Conversation History].
- Personal actions suggested to combat climate change include:
 - o Recycle and reuse things.
 - Walk or use public transportation to get to work.
 - o **Turn off your electronics** when you're not using them.
 - Eat less meat.
 - o Eat more locally grown vegetables and foods.
 - o Spread your knowledge and concerns about climate change with others.
- By making these changes, it might still be possible to **prevent some of the worst effects of climate change**[Conversation History].
- The main takeaway is that climate change is real.

Study Guide: Understanding Climate Change

This study guide covers the main causes, effects, and potential solutions related to climate change as described in the sources and our conversation history.

I. What is Climate Change and the Greenhouse Effect?

- Climate change is a real and serious issue, and it is far from just a buzzword. It is fundamentally changing the world around us [Conversation History] and is characterized by an abrupt increase in the Earth's temperature [Conversation History].
- Scientific evidence now shows that the current human-caused global warming of 1.1 degrees Celsius is increasingly impacting nature and people's lives everywhere, despite efforts to adapt to the changing climate.
- The Earth's climate has changed throughout history, with most slight changes caused by small variations in the Earth's orbit. However, climate change as we know it today is not caused by these natural variations, but rather is **very likely caused by human activities** [Conversation History]. The **scientific evidence is now unequivocal** that climate change is impacting the well-being of human societies and our planet.
- It is estimated the Earth has gotten **1.2 to 1.4 degrees Fahrenheit warmer in just the last century** [Conversation History].
- 10 out of the last 13 years were the warmest on record [Conversation History].
- The primary cause of this current rapid warming is a phenomenon known as the **greenhouse effect** [2, Conversation History].
- **Greenhouse gases** in the atmosphere allow the sun's light to enter but trap some of the heat radiated from the sun from escaping. This process is similar to the glass walls of a greenhouse [Conversation History].
- The more greenhouse gases in the atmosphere, the more heat gets trapped, which strengthens the greenhouse effect and increases the Earth's temperature [3, Conversation History].
- Greenhouse gases occur naturally, but in excess can be dangerous to our planet [Conversation History].
- Examples of greenhouse gases include water vapor, carbon dioxide (CO2), methane, nitrous oxide, and chlorofluorocarbons [Conversation History], with CO2 being directly linked to ocean acidification[Conversation History].

II. Causes of Climate Change

- **Human activities** are the main driver of the rapid rate of climate change [1, 2, Conversation History]. **97% of climate scientists agree** that this new tendency of warming is due to human activities [Conversation History].
- These activities have increased significantly since the **Industrial Revolution** [2, Conversation History].
- Humans have advanced remarkably, building airplanes, faster cars, and developing new technology, which has led to increased consumption of natural resources [Conversation History].

- A significant activity is the **burning of fossil fuels**, which has increased the release of non-naturally occurring greenhouse gases [Conversation History].
- The rapid increase in greenhouse gases has warmed the planet at an alarming rate [Conversation History].
- Atmospheric carbon dioxide levels today have not been reached in hundreds of thousands of years, despite Earth's climate fluctuating in the past [Conversation History].
- There is a very intimate relationship between our well-being, the well-being of our planet, and the forces that are driving climate change.

III. Consequences and Effects of Climate Change

Climate change has widespread consequences for various aspects of our planet and human life:

• Overall Impacts:

- All life on Earth, from ecosystems to human civilization, is vulnerable to a changing climate.
- o The extent and magnitude of climate change impacts are larger for each additional fraction of warming than estimated in previous assessments, and so are the risks projected for the future.
- o Impacts involve severe and widespread disruptions to nature and to society.
- o The impacts are becoming increasingly complex and challenging to manage.

• Extreme Weather Events:

- o More frequent and severe climate extreme events are occurring, such as heat waves over land and in the ocean, droughts, and flooding.
- These events have caused widespread and pervasive impacts to ecosystems, people, cities, and infrastructure.
- Extreme events are increasing, and their effects are rapidly changing ecosystems across the globe.
- o Natural disasters like floods, tornadoes, and deadly heat waves are more obvious to humans because of their immediate impact [Conversation History].
- Warmer temperatures make weather more extreme, resulting in more intense major storms, floods, and heavy snowfall, and also longer and more frequent droughts [Conversation History].

• Oceans and Sea Levels:

- One of climate change's biggest victims is our oceans, which play a crucial role in regulating the Earth's temperature and providing 50% of the Earth's oxygen [Conversation History].
- Climate change has increased the global temperature of the oceans by more than
 0.3 degrees Fahrenheit since 1969 [Conversation History].
- A warmer ocean has devastating consequences for supporting life at sea [Conversation History].
- Ocean acidification is a direct effect of increased dissolved CO2 [Conversation History]. Since the late 18th century, ocean surface acidification has increased by 30% [Conversation History].
- A higher acid content puts calcifying species, like oysters and clams, and shallow water corals, at risk, which in turn puts the entire ocean food web at

- risk. This is particularly concerning for the 1 billion people relying on the ocean as their primary source of protein [Conversation History].
- Sea levels have risen 6.7 inches in just the last century, and the rate in the last decade has nearly doubled [Conversation History].
- Sea levels have risen because as the ocean gets warmer, it swells [Conversation History].
- o On top of that, glaciers and ice sheets are melting [4, Conversation History].
- Antarctica lost 36 cubic miles of ice between 2002 and 2005 [Conversation History].
- Since 1994, each year on average, the Earth has lost 400 billion tons from its glaciers [Conversation History]. This enormous amount contributes to rising sea levels, leading to flooding of coastal regions [5, Conversation History].

• Vulnerability and Disproportionate Impacts:

- The poorest communities are the ones that are strongest hit by climate change as they're least able to cope with the growing impacts.
- o Between **3.3 and 3.6 billion people live in such hotspots**, spread across parts of Africa, South Asia, South and Central America, small islands, and the Arctic.
- o Climate change acts like a **stress multiplier** in these regions, where people have limited access to clean drinking water, sanitation, health facilities, or education.
- Livelihoods are strongly dependent on climate-sensitive activities such as farming and fishing.
- o Climate impacts are also felt **differentially by men and women**, as they have different roles and responsibilities in society.
- o **Indigenous peoples, ethnic minorities, and disadvantaged groups**, such as low-income households and those living in informal settlements, are some of the most affected.

• Ecosystems:

- Climate change is impacting every ecosystem across the globe, from high mountain ecosystems to the deep ocean, from tropical coral reefs all the way to Arctic ice-driven ecosystems. We see the fingerprint of climate change across all of these systems.
- Marine heat waves, heat waves on land, and storm events are driving changes to the ecosystems and species that we rely on.
- It is pushing species towards polar regions, to higher, cooler altitudes, or down into the deeper, cool waters. This has cascading impacts across ecosystems, and also on people's livelihoods and societies that depend on the services these ecosystems provide.
- As we approach the limits of what species and ecosystems can tolerate, we risk crossing what are called **tipping points**, critical places where returning to previous conditions for recovery is less possible.

• Cities and Infrastructure:

- o Climate change impacts are magnified in cities, where more than half of the world's population lives today.
- Heat waves amplify urban heat islands and air pollution in cities, which affect people's health.

- Critical infrastructure within settlements such as transportation, water, sanitation, and energy systems have been compromised by extreme weather events.
- Ocities and settlements by the sea are specifically impacted by climate hazards. They are at the front line of climate change, being directly exposed to interacting climate and non-climate coastal hazards such as sea level rise and destruction of local ecosystems that previously protected people.
- o Increasing urbanization is an important compounding factor for climate change, especially in coastal areas, as more people move into high-risk, informal settlements.

• Food and Water Security:

- Impacts involve severe and widespread disruptions to nature and to society, reducing our ability to grow nutritious food or provide clean drinking water.
- o Changes in weather make growing crops more difficult [Conversation History].
- o Water supplies are diminished [Conversation History].

• Human Health:

- Climate change can directly affect people's physical health [Conversation History].
- In urban areas, the warmer atmosphere traps and increases the amount of smog [Conversation History].
- Smog contains ozone particles, which increase rapidly at higher temperatures
 [Conversation History].
- Exposure to higher levels of smog can cause serious health problems such as asthma, heart disease, and lung cancer [Conversation History].
- Heat waves in cities also amplify urban heat islands and air pollution, which affect people's health.

IV. Combating Climate Change

- Climate change as we know it today is a change in our Earth's overall temperature with massive and permanent ramifications [Conversation History].
- Although its consequences can be planet-threatening, scientists still believe there are things we can do on a personal level to help [Conversation History].
- While humans are part of the cause, we can also be part of the solution [Conversation History].
- Any delay in concerted global climate action means missing a brief and rapidly closing window to secure a livable future. This report is a dire warning about the consequences of inaction. It shows that climate change is a grave and mounting threat to our well-being and a healthy planet.
- To secure a healthy livable planet for everyone, we need to transform our way of life fundamentally. Taking action now gives us the best chance of success.
- Understanding the Interdependence:
 - The report emphasizes the relationship between three systems: climate, human society, and biodiversity.

- Human society causes climate change and biodiversity loss. These interactions are also the source of the solutions.
- Moving into a sustainability space requires modifying these interactions.
- o This approach recognizes the interdependence of climate, biodiversity, and people, and integrates natural, social, and economic sciences more strongly.

• Adaptation Actions and Challenges:

- o There are adaptation actions that can reduce levels of vulnerability, though their effectiveness depends on context.
- o However, there are **important adaptation gaps**, especially in low-income regions, stemming from financial and institutional barriers.
- We also have evidence of maladaptation: adaptation actions that result in unintended consequences, such as destroying coastal ecosystems through dikes, transferring climate-related risks, or even increasing greenhouse gas emissions.
- Unfortunately, maladaptation often reinforces and entrenches already existing inequalities, disproportionately affecting Indigenous peoples, ethnic minorities, and disadvantaged groups.

• Nature-Based Solutions:

- o Nature offers significant yet untapped potential to reduce climate risks, deal with the causes of climate change, and improve people's lives and livelihoods.
- o However, nature needs space and protection to provide these services.
- o By protecting and restoring 30-50% of our world's ecosystems on land and in the ocean, we help plants and animals build climate resilience.
- o Nature, in turn, can help us regulate the climate, give us clean water, control pests and diseases, pollinate our crops, and provide nutritious food.

• Role of Cities:

- Cities provide a global opportunity to advance adaptation, mitigation, and sustainable development simultaneously.
- Using different adaptation strategies such as nature-based and engineering approaches together, or providing social safety nets, can generate wider benefits for health, food security, and ecosystems.
- o However, investing in nature and cities alone isn't enough.

• Key Solutions and Personal Actions:

- A key solution involves working to replace fossil fuels with renewable energy sources [Conversation History].
- Examples of renewable energy sources include solar and wind power, which do not produce greenhouse gas emissions [Conversation History].
- The report provides **clear pointers for practitioners** on where is the best place to act, highlighting the protection of ecosystems and activities in cities.
- Personal actions suggested to combat climate change include:
 - Recycle and reuse things [Conversation History].
 - Walk or use public transportation to get to work [Conversation History].
 - **Turn off your electronics** when you're not using them [Conversation History].
 - **Eat less meat** [Conversation History].
 - Eat more locally grown vegetables and foods [Conversation History].

- Spread your knowledge and concerns about climate change with others [Conversation History].
- By making these changes, it might still be possible to prevent some of the worst effects of climate change[Conversation History].
- o The main takeaway is that climate change is real [Conversation History].

• Urgency and Policy:

- The report emphasizes the **urgency of immediate and more ambitious action to address climate risks**.
- o Health measures are no longer an option.
- o IPCC reports provide the most up-to-date science related to climate change for policymakers to inform their decisions on developing climate-related policies.
- o These reports go through an extensive review process by experts and governments to achieve the highest quality, making them policy-relevant and policy-neutral.

Study Guide: Impacts of Climate Change on Humans

Climate change is widely recognized by the scientific community and governments as one of the greatest challenges humanity has ever encountered. While weather describes conditions at a specific place right now, **climate** refers to the expected weather conditions in a region at a particular time of year. Climate change is therefore a **change in the usual weather** found in a place, such as a shift in typical rainfall or temperature patterns. Historically, Earth's climate has changed several times over thousands of years, but current changes are happening much faster—in periods of hundreds of years or less.

The primary reason for this accelerated change is the quantity of greenhouse gases (GHGs) emitted into the atmosphere by human activities.

I. Understanding the Greenhouse Effect and its Enhancement

The **greenhouse effect** is a natural process where certain gases in Earth's atmosphere trap heat, preventing it from escaping into space. These gases act as a "warming blanket" around the Earth and are critical for our survival; without them, Earth would be about 30 degrees Celsius colder.

However, since the Industrial Revolution, human activities have added increasing amounts of these greenhouse gases into the air, leading to an **enhanced greenhouse effect**. This process is heating the planet at a much faster rate than natural cycles.

II. Main Greenhouse Gases and Their Sources

The three main gases contributing to the enhanced greenhouse effect are:

- Carbon Dioxide (CO2): A very important component of the atmosphere, naturally released through processes like respiration and volcano eruptions. Human activities significantly increase CO2 through:
 - o **Burning fossil fuels** (oil, gas, coal), which release carbon dioxide that has been stored underground for thousands of years.
 - Deforestation, as forests naturally remove and store CO2 from the atmosphere.
 Cutting them down means CO2 builds up quicker, and burning trees releases their stored carbon.
 - Humans have increased atmospheric CO2 concentration by 47% since the Industrial Revolution, with more CO2 in the atmosphere today than in the past 800,000 years.
- **Methane** (CH4): A hydrocarbon gas produced by natural processes and human activities. It is **30 times more powerful** as a greenhouse gas than carbon dioxide, though less abundant. Sources include:
 - o Decomposition of wastes in landfills.
 - o Agriculture, especially rice cultivation.
 - o Ruminant digestion (e.g., livestock).

• Nitrous Oxide (N2O): A powerful greenhouse gas that is nearly 300 times more potent than carbon dioxide. It is primarily produced by soil cultivation practices, especially the use of commercial and organic fertilizers.

The increased greenhouse gas emissions have already led to a **global mean temperature rise of 1 degree Celsius**, with serious consequences.

III. Major Impacts of Climate Change on Humans and the Environment

A. Rising Global Temperatures and Ice Melt

- Climate change effects are amplified in **polar regions**.
- The Greenland and Antarctic ice sheets have decreased in mass, and glaciers worldwide are retreating.
- This melting ice contributes to sea level rise and means less fresh water will be available, as glaciers store about three-quarters of the world's fresh water.
- Spring snow cover in the Northern Hemisphere has decreased over the past five decades, and snow is melting earlier.
- The Arctic Ocean is expected to become essentially ice-free in summer before midcentury.

B. Sea Level Rise

- Global sea level has risen by about **8 inches since 1880** and is projected to rise another 1 to 8 feet by 2100.
- This is caused by added water from melting land ice and the expansion of seawater as it warms
- Sea level rise will continue past 2100, potentially at even higher rates, as oceans respond slowly to warming.

C. Ocean Impacts

- Oceans have absorbed between one-quarter and one-third of our fossil fuel emissions, leading to them being 30% more acidic than pre-industrial times.
 This acidification poses a serious threat to aquatic life, particularly creatures like oysters, clams, and coral.
- Losing **coral reefs** is not just a tragedy for wildlife; around **half a billion people rely on fish from coral reefs** as their main source of protein, and coral reefs provide tourism income to at least 94 countries.
- Oceans have also absorbed **over 90% of the excess heat** accumulated on Earth due to global warming. Warmer water holds less oxygen, which is expected to lead to **less oxygen in the ocean**.

D. Extreme Weather Events

- Rising average sea surface temperatures mean warmer seas add more water vapor and heat energy into the atmosphere, providing "perfect fuel" for hurricanes.
- This extra heat and water can make dangerous storms even more powerful.
- The intensity, frequency, and duration of North Atlantic hurricanes, as well as the frequency of the strongest ones, have increased since the early 1980s.
- Hurricane-associated storm intensity and rainfall rates are projected to increase as the climate continues to warm.
- Droughts, floods, and extreme weather are already damaging communities today.

E. Food and Water Security

- Our food supply depends on climate and weather conditions.
- Farmers and ranchers face challenges from increased temperatures, water stress, diseases, and weather extremes.
- Global wheat and maize yields are already beginning to decline.
- The overall picture for global crop yields is negative, as they are slowing down due to climate change-related events like **reduced rainfall and higher temperatures**.
- Less freshwater will be available due to melting glaciers.

F. Human Health

- Human health is vulnerable to climate change. The changing environment is expected to cause:
 - More heat stress.
 - o An increase in waterborne diseases.
 - o Poor air quality.
 - Diseases transmitted by insects and rodents.
- Extreme weather events can compound many of these health threats.

G. Displacement and Mass Migration

- Climate change may become the biggest driver of displaced people by 2050.
- In 2008, 36 million people were displaced by natural disasters, with at least 20 million driven from their homes by climate change-related disasters like **drought and rising sea levels**.
- Violent weather events, such as hurricanes and floods, are uprooting entire communities.
- It is anticipated that countries in the Southern Hemisphere will be most affected by displacement. The UN High Commissioner for Refugees warns that "not only states but cultures and identities will be drowned".

H. Wildlife and Ecosystems

• Climate change is happening so fast that many plant and animal species are struggling to cope.

- Many terrestrial, freshwater, and marine species have already moved to new locations as temperatures change (e.g., butterflies, foxes, alpine plants migrating farther north or to higher, cooler areas).
- Some species, including mosquitoes, jellyfish, and crop pests, are thriving, and booming populations of bark beetles have devastated millions of forested acres.
- Ecosystems will continue to change, and while some species may move or become more successful, others, such as polar bears, won't be able to adapt and could become extinct.
- Ocean acidification poses a serious threat to aquatic life, particularly creatures like oysters, clams, and coral.

IV. Addressing Climate Change: Solutions and Actions

While these impacts are terrifying, solutions do exist. The two conventional responses are:

- A. Mitigation: Preventing as much additional warming as possible by reducing greenhouse gas emissions.
 - The Intergovernmental Panel on Climate Change (IPCC) stresses the need to keep global warming below 1.5 degrees Celsius compared to pre-industrial levels to avoid irreversible impacts.
 - To achieve this, global greenhouse gas emissions need to be **net zero by 2050**.
 - This requires a **massive transformation** in how we produce and consume electricity, a newer and better transportation system, stopping deforestation, developing a climate-friendly agricultural system, greater investment in renewable energies, transitioning to a low-carbon economy, and promoting energy efficiency.
 - o Achieving this scale of change will require significant **federal policy**, **including putting a price on carbon**, and robust **international cooperation**, like that reflected in the Paris Agreement signed in 2016. Cutting carbon is the only long-term solution for avoiding climate impacts.
- **B.** Adaptation: Adjusting society to compensate for unavoidable warming.
 - Even with rapid emission reductions, some climate impacts are inevitable (rising seas, record temperatures, droughts, floods, extreme weather).
 - o Adaptation strategies include discouraging development in high-risk areas, planning for water scarcity, and building more resilient cities and communities.
 - Investments in adaptation should be scientifically sound, socially just, and focused where impacts are greatest, often in low-income communities and developing countries.

Understanding these multifaceted impacts of climate change provides the knowledge and motivation needed to make a difference. Every effort counts, and by working together and making informed decisions, we can pave the way for a more sustainable and hopeful future.

Study Guide: Impacts of Climate Change on Humans

Climate change is a global issue that affects every aspect of our lives, not just environmental changes like melting icebergs or hotter summers. It presents challenges that are both environmental and deeply personal, impacting our health, food, livelihoods, and homes. Understanding these impacts is crucial for motivation and action.

I. Health Impacts

- **Heat Waves**: More frequent and intense heat waves can lead to severe health problems, including **heat strokes** and, in extreme cases, **deaths**.
- **Disease Spread**: Warmer climates create ideal conditions for mosquitoes to thrive, leading to the **spread of diseases** like malaria and dengue.
- **Air Quality**: The quality of the air we breathe is deteriorating, causing a **rise in breathing problems** and aggravating allergies.

II. Food and Water Security

- Agriculture: Climate change has a significant impact on farming. Rainfall patterns are less predictable, and rising temperatures make it harder for crops to grow.
- Food Availability & Prices: Reduced crop growth means less food available and potentially higher prices for produce.
- Water Sources: Vital freshwater sources, like glaciers, are melting. Additionally, weird rainfall patterns are affecting river levels.
- Ocean Impacts: Oceans are becoming more acidic, which disrupts the marine food chain, especially fish populations.

III. Economic Impacts

- Livelihoods and Jobs: People's jobs are severely impacted, particularly in fields like agriculture, fishing, and tourism, as nature becomes less predictable.
- Infrastructure Damage: Extreme weather events cause damage to essential infrastructure such as roads, bridges, and buildings, incurring high repair costs.

IV. Coastal and Environmental Impacts

- Coastal Habitats: Our coastlines are under threat from rising sea levels, leading to beach erosion.
- Loss of Vital Habitats: We are losing vital habitats like protective mangroves and colorful coral reefs. These areas are not just picturesque; they support diverse marine life and protect the coast from storm surges.

V. Displacement and Migration

• Rising Sea Levels: Many people are forced to leave their homes because rising seas are swallowing up coastal areas and even entire islands.

- Violent Weather Events: Violent weather events, such as hurricanes and floods, are uprooting entire communities.
- **Droughts and Desertification**: In some places, constant **droughts and expanding deserts** force people to move elsewhere to find water and resources to survive.

VI. Call to Action

- The challenges posed by climate change are not just environmental but deeply personal, affecting health, food, livelihoods, and homes.
- Understanding these impacts provides the knowledge and motivation needed to make a difference.
- Every effort counts, and by working together and making informed decisions, we can pave the way for a more sustainable and hopeful future.

Study Guide: Impacts of Climate Change on Humans

Climate change is widely recognized by the scientific community and governments as one of the greatest challenges humanity has ever encountered [previous guide]. While weather describes conditions at a specific place right now, **climate** refers to the expected weather conditions in a region at a particular time of year [previous guide]. Climate change is therefore a **change in the usual weather** found in a place, such as a shift in typical rainfall or temperature patterns [previous guide]. Historically, Earth's climate has changed several times over thousands of years, but current changes are happening much faster—in periods of hundreds of years or less [previous guide].

The primary reason for this accelerated change is the quantity of greenhouse gases (GHGs) emitted into the atmosphere by human activities [previous guide].

I. Understanding the Greenhouse Effect and its Enhancement

The **greenhouse effect** is a natural process where certain gases in Earth's atmosphere trap heat, preventing it from escaping into space [previous guide]. These gases act as a "warming blanket" around the Earth and are critical for our survival; without them, Earth would be about 30 degrees Celsius colder [previous guide].

However, since the Industrial Revolution, human activities have added increasing amounts of these greenhouse gases into the air, leading to an **enhanced greenhouse effect** [previous guide]. This process is heating the planet at a much faster rate than natural cycles [previous guide].

II. Main Greenhouse Gases and Their Sources

The three main gases contributing to the enhanced greenhouse effect are:

- Carbon Dioxide (CO2): Naturally released through processes like respiration and volcano eruptions. Human activities significantly increase CO2 through:
 - o **Burning fossil fuels** (oil, gas, coal), which release carbon dioxide that has been stored underground for thousands of years [previous guide].
 - Deforestation, as forests naturally remove and store CO2 from the atmosphere [previous guide]. Cutting them down means CO2 builds up quicker, and burning trees releases their stored carbon [previous guide].
 - Humans have increased atmospheric CO2 concentration by 47% since the Industrial Revolution, with more CO2 in the atmosphere today than in the past 800,000 years [previous guide].
- **Methane (CH4)**: A hydrocarbon gas produced by natural processes and human activities. It is **30 times more powerful** as a greenhouse gas than carbon dioxide, though less abundant [previous guide]. Sources include:
 - o Decomposition of wastes in landfills [previous guide].
 - o Agriculture, especially rice cultivation [previous guide].
 - o Ruminant digestion (e.g., livestock) [previous guide].

• Nitrous Oxide (N2O): A powerful greenhouse gas that is nearly 300 times more potent than carbon dioxide[previous guide]. It is primarily produced by soil cultivation practices, especially the use of commercial and organic fertilizers [previous guide].

The increased greenhouse gas emissions have already led to a **global mean temperature rise of 1 degree Celsius**, with serious consequences [previous guide]. Dr. Raborti emphasizes that the current intense heat is "exactly what we saw coming" and that there has not been a "more urgent time to act than now". Even a small increase in the global average temperature means that the "jumping-off point for extreme temperatures" like 105 to 110 degree Fahrenheit days, is making those deadly days "more frequent and more intense and more simultaneous".

III. Major Impacts of Climate Change on Humans and the Environment

A. Rising Global Temperatures and Extreme Heat

- Climate change effects are amplified in **polar regions**, with Greenland and Antarctic ice sheets decreasing in mass and glaciers worldwide retreating [previous guide].
- The current extreme temperatures, such as 105 to 110 degree Fahrenheit days, are becoming "more frequent and more intense and more simultaneous" globally. This phenomenon is being experienced in regions from the **Pacific Northwest**, to the **Plains of America**, to Europe, and particularly in **Texas**, which is considered "ground zero" for extreme heat in the U.S..
- In **London**, **UK**, temperatures reached a record 104.5 degrees Fahrenheit at Heathrow Airport, surpassing the 2019 record of 101.84 degrees Fahrenheit. This is particularly shocking for a country where 65 degrees Fahrenheit is considered quite warm.
- The human body is "not built" for these extreme temperatures or their worsening impact.
- Scientists indicate that we "could potentially expect more summers like this in the future".

B. Sea Level Rise

- This melting ice contributes to **sea level rise** and means **less fresh water will be available**, as glaciers store about three-quarters of the world's fresh water [previous guide].
- Global sea level has risen by about **8 inches since 1880** and is projected to rise another 1 to 8 feet by 2100 [previous guide].
- This is caused by added water from melting land ice and the expansion of seawater as it warms [previous guide].
- Sea level rise will continue past 2100, potentially at even higher rates, as oceans respond slowly to warming [previous guide].

C. Ocean Impacts

• Oceans have absorbed between one-quarter and one-third of our fossil fuel emissions, leading to them being 30% more acidic than pre-industrial times [previous guide].

- This **acidification** poses a serious threat to aquatic life, particularly creatures like oysters, clams, and coral [previous guide].
- Losing **coral reefs** is not just a tragedy for wildlife; around **half a billion people rely on fish from coral reefs** as their main source of protein, and coral reefs provide tourism income to at least 94 countries [previous guide].
- Oceans have also absorbed **over 90% of the excess heat** accumulated on Earth due to global warming [previous guide]. Warmer water holds less oxygen, which is expected to lead to **less oxygen in the ocean** [previous guide].

D. Extreme Weather Events (Enhanced by Heat)

- Rising average sea surface temperatures mean warmer seas add more water vapor and heat energy into the atmosphere, providing "perfect fuel" for hurricanes [previous guide].
- This extra heat and water can make dangerous storms even more powerful [previous guide].
- The intensity, frequency, and duration of North Atlantic hurricanes, as well as the frequency of the strongest ones, have increased since the early 1980s [previous guide].
- Hurricane-associated storm intensity and rainfall rates are projected to increase as the climate continues to warm [previous guide].
- Fires are also raging in places like Greater London, UK.
- Droughts, floods, and extreme weather are already damaging communities today [previous guide].

E. Infrastructure and Services Strain

- In the UK, homes and buildings are "built for a completely different kind of climate," often designed to retain heat due to the typically chilly and damp weather. Most homes do not have air conditioning.
- The extreme heat in the UK has had major impacts on **transportation systems**: flights were suspended at some airports, including the RAF airport, because the tarmac on runways melted. Rail transportation also faced major issues, with many lines cancelled due to excessive heat.
- The **National Health Service (NHS)** in the UK had to take precautions, as operating rooms were too hot to operate in, leading to the cancellation of some routine appointments.
- In **Texas**, the heat is putting a severe strain on the **electricity grid**. There are also concerns about **water infrastructure**, with mains breaking due to shifts in the dry ground and cracking pipes. Many power grids are "not built for these kinds of temperatures".

F. Food and Water Security

- Our food supply depends on climate and weather conditions [previous guide].
- Farmers and ranchers face challenges from increased temperatures, water stress, diseases, and weather extremes [previous guide].
- Global wheat and maize yields are already beginning to decline [previous guide].

- The overall picture for global crop yields is negative, as they are slowing down due to climate change-related events like **reduced rainfall and higher temperatures** [previous guide].
- Less freshwater will be available due to melting glaciers [previous guide]. Dr. Raborti highlights the need to address the "detriment to the food supply system" and how it will make certain foods "less available and accessible," requiring a global approach to nutrition.

G. Human Health

- Human health is vulnerable to climate change [previous guide]. The changing environment is expected to cause:
 - o More **heat stress** [previous guide]. A "red alert warning" was issued in the UK due to the "danger to life" posed by the extreme heat.
 - o An increase in waterborne diseases [previous guide].
 - o **Poor air quality** [previous guide].
 - o Diseases transmitted by **insects and rodents** [previous guide].
- Extreme weather events can compound many of these health threats [previous guide]. Dr. Raborti stresses the need to proactively prepare for the "increased risk to human health" from these changes.

H. Displacement and Mass Migration

- Climate change may become the **biggest driver of displaced people by 2050** [previous guide].
- In 2008, 36 million people were displaced by natural disasters, with at least 20 million driven from their homes by climate change-related disasters like **drought and rising sea levels** [previous guide].
- Violent weather events, such as hurricanes and floods, are uprooting entire communities [previous guide].
- It is anticipated that countries in the Southern Hemisphere will be most affected by displacement [previous guide]. The UN High Commissioner for Refugees warns that "not only states but cultures and identities will be drowned" [previous guide].

I. Wildlife and Ecosystems

- Climate change is happening so fast that many plant and animal species are struggling to cope [previous guide].
- Many terrestrial, freshwater, and marine species have already moved to new locations as temperatures change (e.g., butterflies, foxes, alpine plants migrating farther north or to higher, cooler areas) [previous guide].
- Some species, including mosquitoes, jellyfish, and crop pests, are thriving, and booming populations of bark beetles have devastated millions of forested acres [previous guide].
- Ecosystems will continue to change, and while some species may move or become more successful, others, such as **polar bears**, **won't be able to adapt and could become extinct** [previous guide].

• Ocean acidification poses a serious threat to aquatic life, particularly creatures like oysters, clams, and coral [previous guide]. Dr. Raborti mentions the need to consider the "impacts on biodiversity" and what it "means for nature".

IV. Addressing Climate Change: Solutions and Actions

While these impacts are terrifying, solutions do exist. The two conventional responses are:

- **A. Mitigation**: Preventing as much additional warming as possible by **reducing greenhouse gas emissions**[previous guide].
 - The Intergovernmental Panel on Climate Change (IPCC) stresses the need to keep global warming below 1.5 degrees Celsius compared to pre-industrial levels to avoid irreversible impacts [previous guide]. To achieve this, global greenhouse gas emissions need to be **net zero by 2050** [previous guide].
 - o This requires a **massive transformation** in how we produce and consume electricity, a newer and better transportation system, stopping deforestation, developing a climate-friendly agricultural system, greater investment in renewable energies, transitioning to a low-carbon economy, and promoting energy efficiency [previous guide].
 - o Achieving this scale of change will require significant **federal policy**, **including putting a price on carbon**, and robust **international cooperation**, like that reflected in the Paris Agreement signed in 2016 [previous guide]. Cutting carbon is the only long-term solution for avoiding climate impacts [previous guide].
 - Dr. Raborti emphasizes the need to "mitigate against worst-case warming scenarios," stating that "at some point, we're not going to be able to find solutions to this runaway heat".
- **B. Adaptation**: Adjusting society to compensate for unavoidable warming [previous guide].
 - Even with rapid emission reductions, some climate impacts are inevitable (rising seas, record temperatures, droughts, floods, extreme weather) [previous guide].
 - Dr. Raborti stresses the importance of adaptation, stating, "We need to prepare ourselves. We need to adapt to the changes that we know are coming, that are already underway, and that we anticipate increasing in frequency and intensity". This knowledge allows proactive preparation for increased risks to human health and the food supply system, as well as impacts on biodiversity.
 - Adaptation strategies include discouraging development in high-risk areas, planning for water scarcity, and building more resilient cities and communities [previous guide]. Investments in adaptation should be scientifically sound, socially just, and focused where impacts are greatest, often in low-income communities and developing countries [previous guide].

C. Political and Societal Challenges to Action

• The "politics around climate change policy" are described as "about as hot as the temperatures," with "plenty of politicians who think climate change isn't real".

• There is a **global polarization** on this issue, which was "not the case 15 years ago" when even some Republicans (like John McCain in 2008) and European conservative parties were willing to address climate change. This polarization is a "disaster".

• Executive Action vs. Congressional Action:

- Some climate activists urge the White House to use an emergency declaration to halt crude oil exports, limit drilling, and boost renewable energy resources. However, there is caution about using extreme actions via executive fiat, as they can be reversed by the next president and may not fit within the system of government. Politically, President Biden might also be hesitant due to domestic concerns about high gas prices.
- Congressional action is seen as a way to achieve long-term solutions that cannot be easily reversed. The filibuster does not apply to climate action through reconciliation. The challenge lies in securing bipartisan support, or even gaining the support of key individual senators like Joe Manchin or potentially one Republican like Susan Collins.
- It is very difficult in politics "to play the long game" when immediate concerns like "spiking energy bills" dominate debates, as seen in the UK prime minister's race. The reality is that "you have one party that's not going to participate in any sort of solutions".
- The situation in Texas, with its "disastrous grid situation," highlights the consequences of this political inaction.

Understanding these multifaceted impacts of climate change provides the knowledge and motivation needed to make a difference. Every effort counts, and by working together and making informed decisions, we can pave the way for a more sustainable and hopeful future [previous guide].

Climate Change Crisis Study Guide

This study guide summarizes key information about the climate change crisis, its impacts, potential solutions, and the broader context as discussed in the sources.

I. Overview of the Climate Crisis and Level of Concern

- Scientists believe climate change is increasing the frequency of heat waves, leading to droughts and wildfires.
- Americans should be very concerned about the climate crisis.
- The current situation is considered a **crisis** by many climate scientists, who note that events are happening **faster than anticipated**.

II. Current Impacts and Manifestations of the Climate Crisis

The sources highlight several critical impacts currently being observed:

• Extreme Heat Waves:

- o Massive heat waves are occurring from Las Vegas to the East Coast, with Boston experiencing multiple days at **triple digits**, breaking temperature records.
- o The Pacific Northwest is heading into another **heat dome**, similar to one that directly or indirectly **killed over 90 people** last year.

• Water Scarcity:

- Lake Mead and Lake Powell are at 28% capacity, threatening the water supply for 40 million people.
- o Better management of water resources, including cutting back, is needed.

Wildfires:

- o **Over 5 million acres** in the western United United States have already burned, with a potential for another 10 million acre record year.
- o California has started off slowly but is still a concern.
- Wildfire season is becoming prolonged due to warmer winters and faster drying out of fuels.
- Southern California is essentially facing a 365-day-a-year fire season at lower elevations.
- Global Impact: These scorching temperatures and impacts are being seen not only in the U.S. but also in Europe.

III. Solutions to the Climate Crisis

The sources discuss two main approaches to tackling the climate crisis: **Adaptation** and **Mitigation**.

- **Adaptation**: This involves taking actions because we cannot completely avoid the impacts of climate change.
 - o It acknowledges that we won't suddenly remove all CO2, methane, and greenhouse gases from the atmosphere.

- Examples of adaptation measures include:
 - Fire smart planning.
 - **Replanting of trees**, such as the **1.2 billion tree initiative** by the federal government (President Biden mentioned a billion trees).
 - Better management of water resources, including cutting back on water usage.
- Mitigation: This focuses on reducing the amount of greenhouse gases in the atmosphere.
 - o It is described as a **longer-term proposition**.
 - o Requires an international effort.

IV. Political and Societal Realities

- **Government Caution**: The federal government has been cautious, with President Biden stopping short of declaring a climate emergency, instead issuing modest executive orders.
- Multiple Crises: There's an understanding that people are facing a multitude of challenges concurrently, which can influence the government's approach to declaring a climate emergency. These challenges include:
 - o A potential recession.
 - o High gas prices.
 - High rents and housing prices.
 - o The ongoing pandemic.
- Climate as a Persistent Challenge: While acknowledging other crises, the sources emphasize that climate change is a big one that will stay with us and needs to be tackled.
- Unprecedented Times: The current period is characterized as unprecedented due to the various challenges facing the nation and the world.

Study Guide: Climate Science – What You Need To Know

This guide summarizes the key arguments and evidence presented in the source regarding climate change, its causes, and its profound implications.

https://www.youtube.com/watch?v=ffjIyms1BX4

I. The Scientific Consensus on Climate Change

- Climate change is happening, and humans are causing it.
- The level of scientific agreement on this issue is compared to fundamental claims like "Earth is a planet" or "air is real".
- Despite overwhelming evidence, there is still public debate, which the source aims to address by providing factual understanding.

II. The Greenhouse Effect: Earth's Natural Thermostat and Human Enhancement

- Source of Earth's Warmth: The sun provides warmth to Earth.
- Heat Absorption and Reflection:
 - o Ice and clouds reflect some sunlight away.
 - o The rest of the sun's light is **absorbed by land and water** and then **re-emitted as** heat
- Atmospheric Greenhouse Effect:
 - Some of this re-emitted heat escapes to space, but some is held in by the atmospheric greenhouse effect.
 - The insulating effect of Earth's greenhouse gases (GHGs) is essential for life as we know it.
- Human Impact on Greenhouse Gases:
 - Humans have increased the concentration of carbon dioxide (CO2) by 40% since the Industrial Revolution.
 - Other greenhouse gases like methane (from farm animals and natural gas processing) and nitrous oxide (from fertilizers) are also increasing.
 - Human activities, including fossil fuel burning, cement production, and land use, have emitted about 2,000 gigatons of CO2 into the atmosphere since 1870, with about 40% remaining there.

III. Evidence That Climate Change Is Happening

- Global Temperature Increase:
 - Since 1900, actual temperatures around the world have increased almost a full degree.
 - o **Most of this warming has occurred since the 1970s**, during which global temperatures increased the fastest.
 - Each of the past three decades has been warmer than any other decade since measurements began in 1850.

- o The past 30 years are probably the warmest in eight centuries, based on data from tree rings and ice cores.
- Earth is currently warming about 10 times faster than at the end of an ice age.
- While some places may still experience cold, the 2000s saw twice as many record highs as record lows.

• Ocean Changes:

- Oceans cover over 70% of Earth and absorb more than 90% of the heat added to the planet, making them sites of extreme changes.
- Oceans are rising a tenth of an inch per year, and are up 8 inches since 1901.
 This is due to water expanding as it warms and the melting of ice sheets and glaciers in Greenland and Antarctica.
- More CO2 dissolving in the ocean makes the water more acidic. This doesn't mean oceans become literal acid, but it negatively impacts animals with calcium shells; a projected pH of 7.8 in 100 years could wipe out one-third of ocean species.

• Arctic Sea Ice Decline:

- Summer sea ice levels in the Arctic have decreased 40% since 1978 and may be the lowest in 1,400 years.
- The loss of white sea ice (which reflects sun's energy) exposes the dark ocean (which absorbs heat), creating a positive feedback loop that accelerates warming.

• Atmospheric CO2 Levels:

o Gases trapped in ice cores show that today's carbon dioxide levels (over 400 parts per million) are the highest they've been for almost a million years, even before humans existed, indicating "totally uncharted territory" for humanity.

IV. Evidence That Humans Are Causing Climate Change

• Solar Activity vs. Temperature:

- While the sun's output has varied historically, since the 1970s (when global temperatures rose fastest), temperature and solar activity have moved in opposite directions.
- o If the sun were responsible, it would warm both upper and lower atmospheric layers; instead, warming is only seen in the lower layers where human greenhouse gases are accumulating.

• Isotopic Signature of Carbon:

- The best evidence comes from analyzing isotopes (different kinds) of carbon in the atmosphere.
- Fossil fuels come from old plants, which prefer to use the lighter carbon-12 isotope over the heavier carbon-13, leading to a higher ratio of carbon-12 to carbon-13 in fossil fuels than in the atmosphere.
- When more fossil fuels are burned, the **percentage of carbon-12 in the atmosphere increases**, which is precisely what is observed.

• Volcanic Activity:

o Volcanoes emit only about 1% as much CO2 as humans do.

o Normally, natural CO2 is balanced by exchange between the atmosphere, plants, and animals.

• Failure of Natural Cause Models:

• Simulations using only natural causes of climate change predict no change or even cooling in the 20th century, which contradicts actual observations.

• Elimination of Carbon Sinks:

o Human activities have also **eliminated natural carbon sinks**, releasing centuries worth of carbon in just a few years.

V. Projected Impacts and Urgency

- If current CO2 emission trends continue, Earth is on course to be **2.5 to 5 degrees** warmer.
- Oceans could be up to a meter higher by the end of this century.
- These changes are described as "the **biggest deal**" and "by far the **greatest issue facing our species**".
- The source emphasizes the need to **share this information** to educate others.

Study Guide: Greenhouse Effect and Global Warming

This guide summarizes the key concepts, mechanisms, and implications of the greenhouse effect and global warming, drawing directly from the provided source material.

I. Earth's Unique Environment and Its Protection

- Earth's Favorable Conditions: Unlike other planets in our solar system, Earth has relatively stable temperatures and a vast diversity of life forms. This makes it a favorable place to live.
- The Atmosphere's Role: The Earth's atmosphere is a thin blanket of air surrounding the Earth from all sides, composed of many different gases.
 - o It acts like an umbrella, **protecting Earth from harmful radiations from the** sun.
 - The **ozone layer** within the atmosphere specifically **blocks some harmful ultraviolet rays** from reaching the surface.

II. The Greenhouse Effect: Earth's Natural Warming Mechanism

- **Incoming Solar Radiation**: Earth is constantly bombarded with an enormous amount of **radiations from the sun**, received as light and heat energy (visible, ultraviolet, and infrared). These radiations must first pass through the atmosphere.
- Absorption and Reflection:
 - o Part of the rays reaching the Earth's surface is **absorbed by the Earth**.
 - o Some rays, especially infrared waves, are reflected back into space.
- Heat Trapping: Certain gases in the atmosphere trap this heat radiation and re-emit it to the surface, which leads to the warming of the environment.
- Definition of Greenhouse Effect: This exchange of incoming and outgoing radiation that warms the Earth is referred to as the greenhouse effect.
- Analogy to a Greenhouse: The effect is named after a glass building (a greenhouse) where plants requiring protection from cold are kept. The glass cover traps heat energy, keeping the inside warm, just as the Earth's atmosphere acts as a "glass" and traps heat.
- Essential for Life: The greenhouse effect is essential to keep our planet warm. Without it, the Earth's surface temperature would be minus 20 to minus 40 degrees Celsius.

III. Global Warming: The Consequence of an Enhanced Greenhouse Effect

- Greenhouse Gases (GHGs): The gases involved in trapping heat are called greenhouse gases.
 - Main examples include carbon dioxide, methane, water vapor, and chlorofluorocarbons.

- Human Impact: Over the last two centuries, human activities have dramatically changed the Earth's atmosphere.
 - o The amount of greenhouse gases has increased and is still increasing.
 - o This leads to too much heat being trapped.
- Definition of Global Warming: This excess of the greenhouse effect results in global warming, which is an increase in the Earth's average temperature.
 - The source states that human-made carbon dioxide emissions have caused global warming.
- Observed Consequences:
 - o Stable temperatures are rising every passing year.
 - Oceans are getting warmer.
 - o A significant shift in the climate is seen.
 - o Glaciers are melting.
 - The **consequences of global warming are enormous**, affecting the entire planet, not just one country.

IV. Addressing Global Warming: Solutions and Mitigation Efforts

- International Efforts: Many nations have come together to sign an international treaty, the **Kyoto Protocol**.
 - Its major objective is a commitment to reduce greenhouse gases by about 5% below their 1990 levels.
- Individual Contributions (What "We" Can Do): Individuals can contribute to reducing global warming and its consequences through various actions:
 - o Planting more trees.
 - o Reducing waste generation.
 - o Reducing the use of products that generate greenhouse gases.
 - Using energy-efficient appliances.
 - o Increasing the fuel efficiency of vehicles.
 - o **Using more renewable energy** or switching to "greener ways" that cause less harm to the environment.

Study Guide: Climate Risk in the United States

This guide summarizes the methodology for assessing climate risk in the U.S., projected changes in climate hazards, and the most vulnerable regions, drawing directly from the provided source material.

I. Defining Climate Risk: The Risk Map Methodology

Dr. Marshall Shepard and Dr. Benita Casey developed a risk map of the United States that combines three major variables to identify areas most vulnerable to climate change.

- 1. Hazards: These are the specific extreme weather and climate events modeled.
 - o **Included in the model**: Heat waves, cold spells, extreme precipitation, and drought.
 - o Also causing catastrophic damage: Hurricanes and wildfires.
- **2. Exposure**: This refers to "what people or infrastructure or resources are actually being impacted" by an extreme event.
 - Urban spaces, with their high concentrations of people and "stuff," are highly exposed. Examples include Metro Atlanta, Miami, Southern Florida, parts of the Southwest, and Los Angeles.
- **3. Vulnerability**: This variable captures the susceptibility of communities to these impacts.
 - o The most vulnerable parts of our community include communities of color, the elderly, children under five, and the poor (irrespective of color).
 - Examples on the map include the "well-known Black Belt of the South" (a region of high vulnerability) and areas in Florida with a high elderly population.

II. Projected Changes in Extreme Climate Events

As the climate warms, the models predict significant changes in various extreme events:

• Temperature:

- We are seeing not only increases in average temperatures but also in extreme temperatures, leading to unprecedented instances of record-breaking heat.
- The **Southeast and Southwest** are already experiencing extreme heat, and it is projected to get **much worse in the next 30 years**.
- Parts of Louisiana, Texas, and Florida could experience over 100 days reaching over 100 degrees Fahrenheit a year.
- By 2053, large areas of the country are expected to have at least one day a year reaching 125 degrees Fahrenheit, a temperature that used to be virtually nonexistent. At this temperature, a prolonged power outage could lead to mass mortality.
- We should expect to hear the story of "warmest summers on record, warmest winters on record, or warmest year on record" repeatedly.

• Precipitation:

- While many people assume warming means less water, the future of precipitation is more complicated.
- o For every degree of warming, the atmosphere can hold **7% more moisture**.
- Much of the country, with the exception of the Southwest, is expected to get wetter on average.
- However, it's the extremes that most impact people and homes. A 2024 study indicates that extreme precipitation events are expected to worsen as the climate warms.
- o The atmosphere can produce both more extreme precipitation events and result in more intensive or faster evaporation when moisture is available, meaning both more rain and more drought.
- Currently, 53 million people live in high-risk areas for extreme precipitation, a number that could double with two degrees of warming.

• Other Hazards:

- While more difficult to model, hurricanes and wildfires are causing catastrophic damage in our warming world.
- Wildfires have caused hundreds of billions of dollars of damage across the West and parts of the Southeast in the last decade.
- o Hurricanes have devastated coastal communities.
- Sea level rise will be a significant threat along the entire Eastern Seaboard and the Gulf Coast.

III. Most Vulnerable Regions and Specific Risks in the US

The risk map reveals that **climate variability and vulnerability are present in almost every county** in the United States, indicating "no safe haven to climate change". However, some areas are at significantly higher risk:

- Overall Highest Risk Areas ("Screaming for help"): South Florida, parts of the mouth of the Mississippi near New Orleans, and Los Angeles County.
- Specific Regional Vulnerabilities:
 - o The South (especially the "Black Belt"): Identified as a region of high vulnerability due to socio-economic factors.
 - Florida: Highly vulnerable to sea level rise and heat, exacerbated by an elderly, aging population. Temperatures and humidity can combine to create conditions outside the "envelope of habitability" for humans, causing heat risk and potential death.
 - The Gulf Coast: High risk due to vulnerability to sea level rise and heat. Also noted as "petrochemical alley" with a lot of industry, increasing exposure to hazards.
 - Southwest and California: Vulnerable to drought, extreme rainfall, and water scarcity. Parts of California, including Los Angeles County, are among the highest risk areas.
 - o Cities (e.g., Atlanta, Northeast cities): Particularly vulnerable due to:

- **Urban Heat Island Effect**: Impervious surfaces (roads, buildings) absorb heat and re-radiate it at night, leading to higher night-time temperatures.
- Extreme Flooding: Significant urban footprints with impervious surfaces prevent rainfall from infiltrating the soil, leading to rapid runoff into streams and creeks and severe flooding.
- The densely populated Northeast also faces a significant hazard from extreme precipitation and flooding.
- Coastal Areas (Eastern Seaboard and Gulf Coast): Face a big threat from sea level rise.

IV. Implications and Conclusion

- It's crucial to understand that these hazards are **not experienced equally** across populations.
- The map underscores the immense importance of **adaptation**, **mitigation**, **and resiliency efforts** as we are already "living this map" and moving into riskier areas.
- The source suggests that while the situation is serious, a "better future is within reach" through continued efforts.

Study Guide: Projections of Earth in 2050 and Beyond

This guide summarizes the projected future impacts of human-caused climate change, key contributing factors, and potential solutions, drawing directly from the provided source material.

I. Current Trajectory and Future Projections

• Current State (as of 2050 projection):

- o Governments have **fallen short on making and executing emissions pledges** to thwart further warming.
- The world has **blown past the 1.5-degree Celsius target** that world leaders promised to stick to.
- By 2050, the Earth is projected to have warmed two degrees Celsius since the 1800s. This warming is attributed to when the world first started burning fossil fuels on a mass scale.
- This projected future is described as bleak, but it is emphasized that there's still time to ensure it doesn't become our reality.

Projected Warming by 2100:

- Even if global emissions *start to level off* thanks to government action, it is decades too late to reach net zero in time.
- As a result, by 2100, the Earth is projected to have warmed an additional 0.5 to
 1.5 degrees Celsius.

II. Projected Impacts of Climate Change

• Extreme Weather Events:

- o Heat waves and wildfires regularly fill the evening news.
- o Extreme heat waves are eight to nine times more common.
- Summer days are projected to exceed 40 degrees Celsius in London and 45 degrees Celsius in Delhi.
- o These high temperatures lead to **widespread blackouts** as power grids struggle with energy demands for cooling homes.
- Ambulances are frequently called for patients suffering from heatstroke, dehydration, and exhaustion.
- o Longer, more frequent, and more severe droughts are expected in the southwestern United States, southern Africa, and eastern Australia.
- The Philippines, Indonesia, and Japan face more frequent heavy rainfall due to rising temperatures causing faster water evaporation and increased atmospheric moisture.
- Some communities are unable to keep pace with rebuilding what is constantly destroyed by erratic weather.

• Health Impacts:

- Rising temperatures and air pollution cause a resource squeeze in newborn intensive care wards, leading to higher rates of premature and underweight births.
- o More children are projected to develop **asthma and respiratory diseases**, especially in communities regularly exposed to **forest fire smoke**.

• Sea Level Rise and Displacement:

- Over half of our remaining glaciers are projected to have melted.
- o As the sea heats up, its volume increases due to thermal expansion.
- Together, melting glaciers and thermal expansion are projected to **elevate sea** level by well over a meter.
- o Entire nations, such as the **Marshall Islands and Tuvalu, become uninhabitable** as large parts of their islands are submerged.
- Some islands, like the Maldives, are spending billions to build **interconnected** rafts with floating apartments, schools, and restaurants above their drowned cities
- 250 million people are projected to be displaced globally. Climate migrants in cities like Jakarta, Mumbai, and Lagos are forced to abandon their homes again due to rising tides and extreme storms.
- o Some affluent cities, like New York and Shanghai, attempt to adapt by **elevating buildings and roadways**, and constructing **ten-meter tall sea walls**.

• Ecosystem and Food Scarcity:

- All of the ocean's reefs are projected to have vanished due to rising surface water temperatures, leading children to learn about extinct sea life that once inhabited them.
- o Grocery prices skyrocket as food and water scarcity affect all communities.
- o Intense heat waves combined with increasing humidity make it **deadly for farmers to work outdoors** in tropical and subtropical regions. As a result, fruits and products traditionally grown there rarely appear on shelves.
- Unpredictable heat waves, droughts, and floods cripple small-scale farmers in Africa, Asia, and South America, who previously produced one-third of the world's food.
- o Hundreds of millions of people are pushed into hunger and famine.

III. Contributing Factors and Solutions

• Human-Caused Warming:

- The source explicitly attributes the devastating effects to **human-caused climate change**.
- o The Earth's warming since the 1800s is linked to the **mass burning of fossil fuels**.
- o The increase in **global emissions added to the atmosphere each year** is a key factor, even if they later start to level off.

• Path Towards Mitigation:

- o Despite the grim projections, many climate experts remain optimistic.
- Since countries began taking steps to lower emissions, warming projections have shifted downwards. The world is no longer on track to hit nearly four degrees of warming.

- Policies are crucial and should include:
 - Investing in renewable energy sources.
 - Cutting fossil fuel production.
 - Supporting electric transportation.
 - Protecting our forests.
 - Regulating industry.
- Experts stress that **current policies and pledges do not go far enough** in speed or scale.
- Enacting real change will require bold solutions, innovations, and collective action.
- It is highlighted that there's still time to rewrite our future, and every tenth of a degree counts.

Study Guide: Understanding Climate Change and Global Warming

This guide summarizes key concepts, evidence, causes, and impacts of climate change, drawing on the "What is Climate Change - Crash Course" excerpts.

I. Core Definitions and Distinctions

• Climate Change:

- Defined as the change in average weather patterns in a region over a long period of time.
- o These changes can be **natural or anthropogenic (human-induced)**.
- A "long period" means each climate period can last for several decades or longer.
- o *Example*: The Little Ice Age (1300-1850 CE) was a natural climate pattern where mountain glaciers expanded worldwide and northern hemisphere mean annual temperatures dropped by 0.6 degrees Celsius over a 550-year period.

Global Warming:

- o Defined as the increase in the average surface temperature of our planet.
- o When scientists or leaders discuss global warming, they are almost exclusively referring to the **recent warming since the Industrial Revolution** (17th and 18th centuries).
- o This recent warming comes from human activities that increase greenhouse gas emissions (like carbon dioxide, methane, and nitrous oxide), which trap solar energy and hold more heat in the atmosphere.
- Essentially, when the planet gets warmer, climates change.

II. Evidence of Climate Change

• Glacier Retreat:

- o Glaciers worldwide, including in Alaska (Muir Glacier), the Swiss Alps, and Mount Kilimanjaro, have **shrunk dramatically**.
- o Examples:
 - Ókjökull (Oak Glacier) in Iceland was officially declared dead in 2014 and its loss was commemorated with a plaque in 2019, making it the first monument dedicated to a glacier lost to human-induced global warming. It once spanned 38 square kilometers.
 - Muir Glacier in Alaska shows significant shrinkage when comparing photos from 1941 to 2004.
- Glaciers melt faster as air temperatures get warmer, and they also depend on precipitation; less snow accumulation means glaciers lose more ice than they can replace.
- o When the climate is warmer, **glaciers retreat and sea levels rise**, ushering in an interglacial period, which we are currently in.

• Sea Level Rise:

- Average annual global temperatures have risen between 0.3 and 0.6 degrees
 Celsius, and sea level has risen between 10 and 25 centimeters during the past 100 years.
- o This is a direct consequence of glaciers melting.
- Proxy Data (Clues about the Past):
 - Paleoclimatologists study past climates using proxy data, or data that provides clues about the past.
 - Types of Proxy Data:
 - **Tree rings**: Show dry and wet years.
 - **Fossilized bugs**: Indicate moisture and temperature levels of past ecosystems.
 - **Deep sea sedimentary records**: Reveal the ocean's past; show that the Earth has had two extreme climates and glaciers advanced/retreated at least 28 times in the past 2.6 million years.
 - **Ice core data**: One of the most useful kinds of proxy data for atmospheric conditions. Scientists extract long tubes of ice from ice sheets and alpine glaciers to estimate climates going back at least 400,000 years.
 - Ice cores contain tiny air bubbles that act like time capsules, providing evidence of past atmospheric conditions and chemical composition.
 - Analysis of ice core samples from polar, tropical, and mid-latitude glaciers shows atmospheric trends and climate change over thousands of years.
 - It can take just a few decades to change from colder to warmer climate patterns based on this data.
 - Ice core data reveals that carbon dioxide levels decreased during ice ages and increased during interglacial periods.

III. Causes of Climate Change

- Natural Driving Forces: Paleoclimatologists hypothesize several natural causes:
 - Orbital causes: Changes in Earth's orbit shape, axial tilt, and proximity to the Sun (e.g., Milutin Milankovitch's calculations show glacial cycles every million years).
 - Volcanic activity: Releases dust into the stratosphere, darkening skies, reducing solar energy (insolation), and lowering temperatures. This relates to the albedo effect (amount of sunlight a surface reflects); white surfaces reflect energy and cool, while darker surfaces absorb and warm.
 - Asteroid impacts: Can cause an "impact winter" by throwing dust and debris into the air, blocking insulation and lowering temperatures (e.g., extinction of dinosaurs 65 million years ago).
 - Rearrangement of continents and oceans: Changes ocean circulation, impacting
 moisture and ocean currents, which contribute to climate patterns (e.g., formation
 of the Isthmus of Panama and redirection of the Gulf Stream).
- Anthropogenic (Human-Induced) Causes:
 - o "What's happening now is unlike anything in the past".

- Scientists have concluded with greater than 95% probability that human activities have caused most of the Earth's warming since the mid-20th century.
- o These activities include:
 - Burning fossil fuels.
 - Industrialization.
 - Modern agriculture.
 - Deforestation.
- These activities increase greenhouse gas emissions (carbon dioxide, methane, nitrous oxide), which trap solar energy and enhance the natural greenhouse effect.
- o In 2016, global atmospheric carbon dioxide levels passed 400 parts per million, higher than at any time in the past million years.

IV. Impacts of Anthropogenic Global Warming

- Changes in Climate Processes: The additional energy from greenhouse gases changes not only average temperature but also climate processes in the atmosphere and oceans.
- Extreme Weather Events: More extreme storms, heat waves, and droughts.
- Wildfires: Potential for increased wildfires in drier conditions.
- **Shifting Patterns**: Changing regional temperature and precipitation patterns cause vegetation zones to shift.
- Sea Level Rise and Changing Coastlines:
 - o Melting glaciers lead to sea level rise.
 - o Thousands of low-lying islands and coastal cities face a threat of rising sea levels by the end of the 21st century, predicted to rise **26 to 77 centimeters**.
 - Over half of the world's population lives within 100 kilometers of a coastline, making this significant.
 - Example: Kiribati, with 33 atolls less than 2 meters above sea level, is planning
 "Migration with Dignity" and has purchased land in Fiji for potential resettlement of its 102,000 residents.
- Climate Refugees: Materially poorer countries will bear most of the impacts, leading to people being forced to flee their homes for safer places.

V. Responsibility and Solutions

- Collective Responsibility: It is our collective responsibility to pay attention and take action regarding human-induced climate change.
- Unequal Emissions, Shared Burden:
 - About half of total US emissions in 2019 were direct emissions from corporations (e.g., power plants, oil and gas production), indicating their significant responsibility.
 - o Materially rich countries are the main producers of greenhouse gas emissions.
 - o Corporations and governments have a responsibility to share the burden.
- Solutions and Actions:

- o **Individual choices can make a difference**, but holding corporations and governments responsible for large-scale emissions and policies is also crucial.
- We still have a small window to **aggressively reduce emissions** to save communities.
- o **Adaptation** is necessary for some places, such as building seawalls, raising streets/homes, or moving to higher elevations.
- While the problem may seem overwhelming, decades of science have identified the problem and the solutions; the challenge is integrating them into society.

Please let me know if you would like me to elaborate on any specific section of this study guide, or if you have any further questions.